Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonances, Radiation Damping and Instability in Hamiltonian Nonlinear Wave Equations

We consider a class of nonlinear Klein-Gordon equations which are Hamiltonian and are perturbations of linear dispersive equations. The unperturbed dynamical system has a bound state, a spatially localized and time periodic solution. We show that, for generic nonlinear Hamiltonian perturbations, all small amplitude solutions decay to zero as time tends to infinity at an anomalously slow rate. I...

متن کامل

On Nonlinear Wave Equations with Degenerate Damping and Source Terms

In this article we focus on the global well-posedness of the differential equation utt − ∆u+ |u|k∂j(ut) = |u|p−1u in Ω× (0, T ), where ∂j is a sub-differential of a continuous convex function j. Under some conditions on j and the parameters in the equations, we obtain several results on the existence of global solutions, uniqueness, nonexistence and propagation of regularity. Under nominal assu...

متن کامل

Systems of Nonlinear Wave Equations with Damping and Supercritical Sources

We consider the local and global well-posedness of the coupled nonlinear wave equations u tt − ∆u + g 1 (u t) = f 1 (u, v) v tt − ∆v + g 2 (v t) = f 2 (u, v), in a bounded domain Ω ⊂ R n with a nonlinear Robin boundary condition on u and a zero boundary conditions on v. The nonlinearities f 1 (u, v) and f 2 (u, v) are with supercritical exponents representing strong sources, while g 1 (u t) and...

متن کامل

Dynamics of nonlinear resonances in Hamiltonian systems

It is well known that the dynamics of a Hamiltonian system depends crucially on whether or not it possesses nonlinear resonances. In the generic case, the set of nonlinear resonances consists of independent clusters of resonantly interacting modes, described by a few low-dimensional dynamical systems. We formulate and prove a new theorem on integrability which allows us to show that most freque...

متن کامل

Exponential growth of solutions for a coupled nonlinear wave equations with nonlinear damping and source terms

In this paper, we study initial-boundary conditions for a coupled nonlinear wave equations with weak damping terms. The exponential growth for suf ciently large initial data is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 1999

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s002220050303